- 阅读权限
- 10
- 帖子
- 40
- 积分
- 40
- 精华
- 0
- 最后登录
- 2013-4-21
- 注册时间
- 2013-4-21

- 乡约币
- 101 枚
- 乡约宝
- 0 枚
- 最后登录
- 2013-4-21
- 注册时间
- 2013-4-21
|
 | |  |  | | 姓名:史玉明
性别:女
出生年月:1963.2
学历:博士
专业技术职务:教授
担任博导时间:2002年
| 史玉明教授 |
教育与工作经历
1984年在山东师范大学数学系获得学士学位。 1990年在南开大学数学系获得硕士学位,师从刘光旭教授。2000年在山东大学数学与系统科学学院获得博士学位,导师陈绍著教授。1984年7月至1997年8月,在曲阜师范大学数学系工作。1997年至今在山东大学数学与系统科学学院工作。 2000年被遴选为硕士生导师,2001年晋升为教授,2002年被遴选为博士生导师。
教学工作 从1984年开始从事高校教学工作。多年来一直坚持给数学院本科生讲授数学专业课。曾为山大数学院基地班讲授:数学分析、常微分方程、泛函分析。从1995年开始为数学院微分方程方向的博士生和硕士生开设多门课程:奇异摄动理论、微分方程谱理论、Hilbert空间上线性算子理论、动力系统、离散动力系统混沌理论、复杂网络等。现在指导在读博士生4位和硕士生4位。
学术活动 从2003年至今,作为高级访问学者 (Research Fellow) 多次到香港城市大学(City University of Hong Kong)和香港理工大学(Hong Kong Polytechnic University)访问,分别与陈关荣教授和谢智刚教授合作研究混沌理论与复杂网络。2004年至2005年,作为访问教授(Visiting Professor)到加拿大西安大略大学(University of Western Ontario)访问,与郁培教授合作研究动力系统混沌理论。曾被邀请访问加拿大滑铁卢大学(University of Waterloo)、加拿大约克大学 (York University)、中国科学院数学与系统科学研究院、清华大学、上海大学等。先后多次作为特邀报告人参加国际学术会议并报告了研究成果。曾经和正在担任三个国际学术刊物的编委:“Dynamics of Continuous, Discrete, and Impulsive Systems, Series B: Applications and Algorithms”(2004年-2007年);“International Journal of Nonlinear Dynamical Systems and Chaos ”( 2007年开始);“Journal of Spectral Mathematics and its Applications” ( 2007年开始)。 从2007年开始被聘为美国数学评论(Mathematical Reviews)评论员。另外,还是国际差分方程学会会员、香港城市大学“混沌与复杂网络研究中心”会员(Associate Member)。
科研项目 作为主要成员参加并完成国家自然科学基金项目两项,作为项目负责人主持并完成国家自然科学基金项目一项和山东省科技厅项目一项。现在正在主持山东省自然科学基金项目一项。目前有在研科研经费7万余元。
科研工作 目前的研究兴趣主要是微分与差分算子谱理论、动力系统混沌理论和复杂网络。给出了正则离散线性哈密顿系统的一系列谱结果,建立了一类奇异离散线性哈密顿系统的Weyl-Titchmarsh 基本理论,为进一步研究离散线性哈密顿系统的谱理论奠定了基础。在离散系统的混沌判定方面,引入了度量空间上耦合扩张映射(coupled-expanding maps)的概念,并利用该映射建立了几个混沌判定定理;将 F. R. Marotto 在1979年提出的关于有限维空间上连续可微映射的返回扩张不动点(Snap-back repeller)之概念推广到一般度量空间上映射中去,并对其进行了分类,然后利用该概念建立了几个完备度量空间上的混沌判定定理,推广和改进了 Marotto 的结果。利用这些结果,建立了几个偏差分方程的混沌判定定理。将这些混沌判定定理应用于离散系统混沌化问题的研究,给出了几个Banach空间上离散系统和一阶偏差分方程的混沌生成方法。首次建立了一个时变离散系统的混沌判定定理。目前,在国际核心刊物上发表和已接受发表学术论文30余篇(SCI收录)。另外,曾获得2001年度山东省优秀博士论文奖,同年山东省科学技术进步奖二等奖(第三位),2002年中国高校科学技术奖二等奖(第二位)。下面是近几年发表和已接受发表的主要论文目录:
混沌理论:
1. Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces, Chaos, Solitons and Fractals 22(2004), 555-571.
2. Y. Shi and G. Chen, Discrete chaos in Banach spaces,Science in China Ser. A Mathematics, 48(2)(2005), 222-238 (English version), 34(5)(2004), 595-609 (Chinese version).
3. Y. Shi and G. Chen, Chaotification of discrete dynamical systems governed by continuous maps, Int. J. of Bifur. Chaos 15(2005), 547-556.
4. G. Chen, C. Tian, and Y. Shi, Stability and chaos in 2-D discrete systems, Chaos, Solitons and Fractals 25(2005), 637-647.
5. Y. Shi and P. Yu, Study on chaos induced by turbulent maps in noncompact sets, Chaos, Solitons and Fractals 28(2006), 1165-1180.
6. G. Chen and Y. Shi, Introduction to anti-control of chaos: theory and applications, Phil. Trans. R. Soc. A 364(2006), 2433-2447.
7.Y. Shi, P. Yu and G. Chen, Chaotification of discrete dynamical systems in Banach spaces, Int. J. of Bifur. and Chaos 16( 2006), 2615-2636.
8.Y. Shi and P. Yu, On chaos of the logistic maps, Dynamics of Continuous, Discrete, and Impulsive Systems, Series B: Applications and Algorithms 14(2007), 175-195.
9. Y. Shi and P. Yu, Chaos induced by regular snap-back repellers, J. Math. Anal. Appl. 337(2008), 1480-1494.
10. Z. Li, Y. Shi and C. Zhang, Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos, Solitons and Fractals 36(2008), 746-761.
11. W. Liang, Y. Shi and C. Zhang, Chaotification for a class of first-order partial difference equations, Int. J. of Bifur. Chaos 18(2008), 717-733.
12. Y. Shi, Chaos in first-order partial difference equations, J. Differ. Equ. Appl. 14(2008), 109-126.
13. Y. Shi and G. Chen, Chaos of time-varying discrete dynamical systems, J. Differ. Equ. Appl. 2008. In press.
14. Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems, Chaos, Solitons and Fractals 2006. Accepted for publication.
15. X. Zhang, Y. Shi and G. Chen, Constructing chaotic polynomial maps, Int. J. of Bifur. Chaos 2008. Accepted for publication.
谱理论及其他:
1. Y. Shi and S. Chen, Spectral theory of second-order vector difference equations, J. Math. Anal. Appl. 239 (1999), 195-212.
2. Y. Shi and S. Chen, Spectral theory of higher-order discrete vector Sturm-Liouville problems, Linear Algebra and Its Applications 323(2001), 7-36.
3.Y. Shi, Symplectic structure of discrete Hamiltonian systems,J. Math. Anal. Appl. 266(2002), 472-478.
4. Y. Shi, Oscillation of self-adjoint second-order vector difference equations to the parameter, Comput. Math. Appl. 45(2003), 1591-1600.
5.Y. Shi, On the rank of the matrix radius of the limiting set for a singular linear Hamiltonian system,Linear Algebra and Its Applications 376(2004), 109-123.
6. Y. Shi, Spectral theory of discrete linear Hamiltonian systems,J. Math. Anal. Appl. 289(2004), 554-570.
7. J. Chen and Y. Shi, The limit circle and limit point criteria for second order linear difference equations, Comput. Math. Appl. 47(2004), 967-976.
8. Y. Wang and Y. Shi, Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions, J. Math. Anal. Appl. 309(2005), 56-69.
9. G. Ren, Y. Shi, and Y. Wang, Asymptotic behavior of solutions of perturbed linear difference systems, Linear Algebra and Its Applications 395( 2005), 283-302.
10. Y. Shi, Weyl-Titchmarsh theory for a class of discrete Hamiltonian systems, Linear Algebra and Its Applications 416(2006), 452-519.
11. H. Sun and Y. Shi, Eigenvalues of second-order difference equations with coupled boundary conditions,Linear Algebra and Its Applications 414(2006), 361-372.
12. H. Sun and Y. Shi, Limit-point and limit-circle criteria for singular second-order linear difference equations with complex coefficients, Comput. Math. Appl. 52 (2006), 539-554.
13. G. Ren and Y. Shi, Asymptotic behaviour of dynamic systems on time scales, J. Differ. Equ. Appl. 12(2006), 1289-1302.
14. S. Sun, Y. Shi, and S. Chen, The Glazman-Krein-Naimark theory for a class of discrete Hamiltonian systems, J. Math. Anal. Appl. 327(2007), 1360-1380.
15. Y. Wang, Y. Shi, and G. Ren, Transformations for complex discrete linear Hamiltonian systems and symplectic systems, Bulletin of the Australian Mathematical Society 75(2007),179-191.
16. H. Sun and Y. Shi, Strong limit point criteria for a class of singular discrete linear Hamiltonian systems, J. Math. Anal. Appl. 336(2007), 224-242.
17. C. Zhang and Y. Shi, Eigenvalues of second-order symmetric equations on time scales with periodic and antiperiodic boundary conditions, Appl. Math. Comp. 2008. In press.
国际会议论文集(国内会议论文略):
1. Y. Shi and P. Yu, ``Chaos induced by snap-back repellers and its applications to anti-control of chaos,'' Proc. of the 4th DCDIS International Conference on Engineering Applications and Computational Algorithms, Guelph, Ontario, Canada, July 27--29, 2005, pp. 364--369,
2. Y. Shi, P. Yu, and G. Chen, “Anti-control of discrete chaos in Banach spaces,” Proc. of the 5th EUROMECH Nonlinear Dynamics Conference, the Eindhoven University of Technology, The Netherlands, August 7--12, 2005, pp. 1191-1199.
3. Y. Shi and G. Chen, “Some new criteria of chaos induced by coupled-expanding
maps”, Proc. of the 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims- France, June 28-30, 2006, pp. 157-162. Edited by Mohamed Djemai, Wei Kang, Noureddine Manamanni.
4. Y. Shi, “Chaos induced by coupled-expanding maps”, Proc. of the 2nd International Conference on Dynamical Vibration and Control, Beijing, China, August 23-26, 2006, pp. 184. Edited by Chinese Society of Theoretical and Applied Mechanics.
5. Y. Shi, “Snap-back repeller: theory and its applications”, Proc. of the Fourth Asia-Pacific Workshop on Chaos Control and Synchronization, Harbin, China, August 24-26, 2007, pp. 26
|
| |  | |  |
|
|